A Method of Testing the Strength of Heavy Duty Caving Belts
The aim of this was to establish a method to test the strength of heavy duty caving belts that did not rely on having access to a load cell. I hoped to produce a simple system that needed very little equipment and that would deliver a test load to a belt that exceeded the minimum strength requirement for its use.
Why? Well I felt that I needed to have some kind of empirical justification to use an item of non-PPE equipment in the role of a height security device. I didn’t feel that “because we have always used them in this way” was a sufficient argument for their use. As far as I’m aware there has never been a failure of a caving belt that led to an accident, but that is not really a reason for never questioning their use in this role. These are my personal thoughts and it does not constitute ‘advice’ or the position of the BCA Training schemes.
A quick note on use of belts – The user should never be in a position where they can become suspended on a belt alone. Additionally, they must never be subjected to falls or dynamic loads. They are for restraining movement to keep someone away from a fall hazard or preventing a slip becoming a fall on easy angled ground. They are no substitute for a harness where suspension is possible.
What strength does a belt need to be?
Well, this one is a potential can of worms…. Let’s be clear, the manufacturers do not condone the use of their heavy duty belts for taking any load at all beyond hanging your battery or lunch box from it. There is a historical use in cave and mine exploration that involves using the belt for the purpose of slip prevention and security on steep ground when combined with a rope belay or cowstails. If you were intending to use it for this purpose, especially as a leader of others, you’d need to be 100% sure that the belt was strong enough for that role. The manufacturers do not state this type of use is approved or list any strength rating on the product or the literature accompanying it. You must conduct your own test and risk assessment if you are to use them in this way.
If you want an item that has a certified standard for this type of use, you could choose to use a climbing harness, caving harness or potentially an EN358 work positioning/restraint belt.
For anticipating loads that could be applied to a belt in use, I have used a mass that is comparable to the maximum user weight ratings on some of the common PPE equipment at the time of writing: 120kg (Mass)
The caver has a short dynamic rope lanyard of 50cm length, fixed from their belt to an anchor. As discussed above, the user should never be subjected to a fall or suspension, but I am using the forces that it is possible to generate in ‘foreseeable misuse’ as a starting point for considering how strong a belt needs to be.
If they climb above the anchor, until the lanyard is tight, then ignoring all stretch or slack in a system, a possible FF2 fall of 1 metre can occur.
This FF2 fall will likely result in injury and, as a rule, cavers avoid putting themselves in a position where this kind of drop can be taken. By not climbing above the attachment point of there lanyard, the resulting fall cannot exceed FF1, or 50cm in this case.
When using dynamic rope cowstails, the UIAA standard permits stretch up to 40% of original length. For a 50cm cowstail, this is 20cm, or 0.2m (Impact Distance).
For a Fall Factor 2 (1m drop on to 0.5m cowstails)
velocity = √ (distance x acceleration due to gravity x 2)
v = √ (1 x 9.81 x 2)
v = 4.43 m/s
Kinetic energy = 0.5(mass x velocity²)
Ke = 0.5 (120 x 4.43²)
Ke = 1177.5 Joules
Impact force = Kinetic energy / Impact distance
IF = 1177.5 / 0.2
IF = 5887.5 N
Impact Force = 5.89 kN
This is clearly a very serious amount of force and is only a hair under the threshold that the work at height industry uses as a maximum safe force the human body should be subjected to. An impact of around 6kN on the body will cause injury in a lot of cases and should certainly never be taken on a heavy duty caving belt. It is beyond anything we should ever do when wearing belts and is included only to demonstrate the risk of improper use. A FF1 drop is still something to be avoided, but is more realistic of a potential real world scenario.
For a Fall Factor 1 (0.5m drop on to 0.5m cowstails)
velocity = √ (distance x acceleration due to gravity x 2)
v = √ (0.5 x 9.81 x 2)
v = 3.13 m/s
Kinetic energy = 0.5(mass x velocity²)
Ke = 0.5 (120 x 3.13²)
Ke = 587.8 Joules
Impact force = Kinetic energy / Impact distance
IF = 587.8 / 0.2
IF = 2939 N
Impact Force = 2.94 kN
So a 0.5m drop on to a 0.5m dynamic lanyard may produce a force of around 3kN for a 120kg caver. This does not take into account any stretch or bounce. This figure seems pretty reasonable, but we should seek more evidence to reinforce this for our follow up testing.
When considering the use of caving belts, can we can compare it to something done in another industry? Well yes, work restraint systems often make use of padded restraint belts instead of harnesses. One of the critical requirements for this system is that a user may not be permitted to go into suspension on this system. That seems very close to how we should be using heavy duty caving belts. When consulting BS8437 – Code of practice for the selection use and maintenance of personal fall protections systems and equipment for use in the workplace, we can identify that restraint belts need to conform to EN 358. Accessing this standard is expensive and no doubt the items conforming to this standard will have a very high safety factor. What we can get from BS8437 is the recommended strength of anchor points for use in a work restraint system. This is 3 x the mass of the user. A correctly installed and utilised work restraint system is only required to have an anchor of 3 x users mass. For our 120kg caver, this would be 360kg, or 3.6kN in force.
For our 120kg fictitious caver, we can mathematically predict a theoretical force of just under 3kN for a FF1 drop. We can also see that and anchor of 360kg (3.6kN) would be required if using similar techniques in work restraint. The figures are not exactly a match, but are comparable. Taking the worse case figure is probably the safest option going forward, so our belts must be capable of taking a force greater than 3.6kN for a scenario that does not involve wildly inappropriate use.
Safety Factor?
Apply to this any safety factor you wish. The 3kN figure from the maths is indicative of the maximum possible force generated in a FF1 drop on 50cm cowstails, the real world figure will be far lower due to stretch and slippage of the belt on the body and the sagging of the rope the caver is connected to. The BS8437 figure is a 3 x safety factor over the user’s mass anyway. You could argue that belts tested to 3.6kN would be sufficient as an indicator of appropriate strength if you never operated with cavers heavier than 120kg.
Belt Strength
Accepting all this, we are left with the figure of 3.6kN as our chosen minimum requirement for the strength of the heavy duty caving belt for any user we might encounter regularly (3 x 120kg based on BS8437).
So as long as we can apply a test force of 3.6kN or more to the belt, we can be assured that the item can hold the greatest possible force we can apply to it in proper use. The only remaining factor of concern is that would applying this force in test render the belt unsafe to use again, in essence, are these tests destructive? Only 1 way find out…..
Testing
Using 1 very large Corsican Pine and a good sized Birch tree, we set up a pull testing rig with a simple 3:1 theoretical configuration. I used a Rock Exotica load cell to get live feedback on the testing here but if you copy the method, you would not need to use one.
For the estimation of test force we regarded each person capable of pulling 50kg (see Gethin Thomas’ work on tyroleans). Through a theoretical 3:1 MA system that would be 150kg per person. With 5 undertaking the pull reaching 750kg and 6 equalling 900kg or approximately 7.5kn and 9kN respectively.
Kit used (minus load cell): Petzl rescue pulley, Petzl Basic jammer, Petzl Partner pulley, Lyon wire sling for tree, assorted karabiners, 20m rope.
Due to the force expected to be placed on the rope, I did not anticipate that I would be able to untie the end knot (fig 8 loop). This was accurate and the knot had to be cut from the rope end. Bare this in mind with your own rope!
We also used a Petzl Rollclip to redirect the angle of pull to make it easier to stand on the tarmac of the road alongside the trees.
Initially we had 5 people pulling the first test on a Lyon roller-buckle belt (brand new).
This produced a force of 5.9kN with no damage or slippage. This is lower than expected but there was a lot of tightening in the knot and stretch in the rope coupled with a general timidness of the pulling team.
The remaining tests used 6 people to pull. This one was conducted on my 10 year old Caving Supplies square buckle belt (already retired). This belt has nicks, fluff and rust and comfortably took a force of 7.74kN showing no damage or slippage. Next came my current AV belt, with it’s central maillon removed and directly attached to the pull line. This belt held 7.7kN without failure or slippage. Finally, the pulling team seemed at their most confident that nothing was going to break and send shards of metal and wood at them so they really gave the last belt some pain. This Warmbac square buckle belt was subjected to 8.64kN with no damage or slippage noted at the time.
It is not surprising that the force exerted by the pulling team was less than the theoretical 3:1 system implied. In practice with the loss of friction due to bearings and turns in the rope a 2.5:1 is a more real world figure and so our 5 x 50kg pulling average adults could be expected to make 625kg/6.25kN using this system.
On this test we pulled the belts to a far higher force than would be needed in a periodical strength test to simply demonstrate that this lower level of testing would not damage the belts. Using 4 people to pull on a 3:1 MA (2.5:1 actual) system in a reasonable way with un-gloved hands, would produce a force exceeding 3.6kN. This would not require a load cell to demonstrate if the method was followed correctly. Using 3 strong people on the same 3:1 (2.5 actual) system would probably be reasonable too.
50kg x 4 people = 200kg x 2.5 mechanical advantage = 500kg or 5kN
50kg x 3 people = 150kg x 2.5 mechanical advantage = 375kg or 3.75kN
Conclusions
Using a system like the one shown here, with 4 people pulling at average strengths, you can apply a force greater than 3.6kN to your test belt.
Once the test is complete you should thoroughly examine the belt like any other item of textile PPE to see if any damage or slippage has occurred. Any that do show signs of damage should be retired. Any slippage may be down to the buckle, but if the belt comes off or strap slides through the buckle under load, it should be deemed as having failed. If a belt has taken the test load and shows no damage or deformity then you can be comfortably sure that the belt will be fit for its intended use whilst still in that condition.
Final inspection of belts:
Lyon roller buckle 5.9kN No damage
Caving Supplies square buckle 7.74kN No damage
AV maillon closed harness buckle 7.7kN No damage
Warmbac square buckle 8.64kN No damage, slight curvature to webbing now when hung vertically which indicates over stretching or broken fibres down one side.
Again, this level of force was beyond what you would test to, but demonstrates that the 4 person 3:1 pull will not damage a belt that is not already fit for the bin.
A Note on Load Testing PPE
We don’t load test PPE. PPE is supplied with declarations of conformities and CE/EN markings. So long as you purchase via a reputable retailer or from the maker, this is the evidence that the product meets the minimum criteria set out in its approval standard.
Caving belts are not PPE and have no categorisation under the PPE Regulations. It therefore falls to the user to ensure they are fit for purpose, and that may involve a test of strength as outlined in this blog post. Ultimately, you must conduct your own risk assessment and define a way to show they are fit for use, copying a blog post won’t cut it with HSE!
Inspections
Lastly – all of this testing and use is predicated on you treating your belts as an item of PPE. They should be purchased new, inspected prior to use and have a recorded inspection every 6 months like any other PPE item. They should be in the same good condition as any textile item of PPE and retired from service if damaged, worn, contaminated or subjected to any load exceeding their safe limit. It is recommended that anyone in charge of inspecting PPE be trained and certified to do so.
As a side note, I maintain that the Caving Supplies belts are the tanks of the heavy duty caving belt world and, if kept very clean, will ultimately outperform every other type or brand available. I think this test shows that well as the CS belt had at least 5 more years of abuse over the other belts. I will dispose of the Warmbac belt just in case but don’t tend to use these anyway, but that’s another blog post!