Pulling SPIT anchors – Back garden test

This week I thought I’d embark on a little back garden test of some brand new SPIT self driving anchors and some SPIT Grip 10mm sleeve anchors. Both take a normal M8 bolt and hanger and can be found in caves and mines across the UK. The Grip sleeves are placed with a drill and only require a 10mm hole, the caving SPIT sleeves can be placed with a hand driver or drill/driver combination in a 12mm hole. Recently there have been discussions about potentially removing superfluous spits in some committees. The idea being that any old ones could now be removed where resin bolts are installed nearby.

I made a quick trip to the Hitch N Hike emporium of shiny things and located a lump of suitably good limestone to transport to the back garden. I set a number of each SPIT anchors into the limestone using the standard installation method for each. For testing I used my freshly calibrated Hilti HAT-28 unit attached directly into the sleeves via a hardened M8 bolt.

20151102_163250391_iOS

Bolt 1, 12mm:
This didn’t make it as far as the testing. Unknown weaknesses in the boulder cracked open as I was hammering the bolt home and the placement failed. Annoying but it does serve to highlight the issues of using any expansion anchor, especially shallow ones like these. Another tick in the ‘for’ column for resin bolts.

20151102_163225670_iOS

Bolt 2, 12mm:
A normal placement in a better part of the rock. I tested this by adding force in 4kN increments until 15kN was reached and the bolt started to slowly extract from the hole. Every time the force increased beyond 15kN the bolt pulled a little further out until it ultimately was removed intact from the rock at a little over 15kN.

Bolt 3, 12mm:
A normal placement as with Bolt 2 in good rock. Force was applied in the same way as before up until about 18kN when a small cracking noise was heard. I very gently increased the load expecting the cracking might be the limestone surface under the metal legs of the puller. At 19kN the bolt let out a loud crack and the tester jumped free of the block. “Great” I thought, it pulled out. Nope. The SPIT sleeve sheared about 15mm from the top, the remainder remaining set in the limestone block.

20151102_165657454_iOS

This was a first for me and I came to a couple of possible conclusions.
1: The sleeve was defective and the break was a freak occurrence.
2: The bolt I used was not screwed far enough into the sleeve and as such mainly applied force to the top section of the sleeve.

Bolt 4, 10mm:
This anchor came out very quickly. The bolt was extracted intact at 5kN. On later inspection the internal cone had not been driven to the full depth, perhaps 6mm short of the end of the sleeve. I suspect this made for a poor expansion in the hole and hence low removal force was required.

Bolt 5, 12mm:
As for Bolt 3, this sheared in the hole, leaving over half its length still in the placement. It sheared at 20kN. I suspect that a longer bolt would give a different result for this type of test. The bolt used was tightened to the same depth as a standard hanger plate attachment would have been when in normal use. The next test would use a longer bolt.

Bolt 6, 12mm:
A longer bolt was used to test this placement. The bolt was screwed in until fully inside the sleeve but not tightened as I did not want to begin to force the cone out the back.
This test did not result in bolt failure. The sleeve was extracted 1mm from the rock as the force reached 18kN and at 20kN was still holding strong at that position. This is the maximum force the HAT-28 can apply.

Bolt 7, 10mm:
This sleeve had it’s cone driven harder when setting, to the point that the sleeve began to push into the drill hole slightly. The tester removed this bolt from the rock at 9kN and it came out intact. The cone was found to be 4mm from the end of the sleeve.

Bolt 8, 10mm:
This bolt was set very hard indeed. The cone was pushed completely into the back of the sleeve with some serious hammering force. The cone was 3mm from the back of the sleeve. This bolt was extracted at 13.5kN and came out intact. The rock around the placement failed as the bolt was nearing full extraction.

Summary:

Bolt 1 12mm no result
Bolt 2 12mm extracted at 15kN
Bolt 3 12mm sheared at 19kN
Bolt 4 10mm extracted at 5kN
Bolt 5 12mm sheared at 20kN
Bolt 6 12mm no failure at 20kN, 1mm of extraction
Bolt 7 10mm extracted at 9kN
Bolt 8 10mm extracted at 13.5kN

20151104_132413931_iOS

Conclusion
Nothing can really be drawn from that info as it is such a small sample. The main learning points I have taken from this are:

  • 12mm sleeves may shear when a bolt is not inserted fully.
  • 10mm sleeves extract at lower forces than 12mm sleeves.
  • 10mm sleeves must be driven home very well to make their higher strengths. This is not always possible as the sleeve can be pushed into the drill hole if not drilled to exact depth*.
  • All shallow expansion anchors can cause the rock to crack near the surface and no placement at this depth can be 100% guaranteed until the cone is set.
  • There are big variations in the extraction forces which depend on many variables during the installation..
  • No sleeve anchor can be removed with 100% certainty meaning that they will likely remain in the walls of the cave or mine forever.

*One of the selling points for this type of anchor sleeve is that they have a lip to prevent them slipping into over drilled holes.

I’ll be doing some further testing soon and will be taking the rig to some corroded anchors already in situ for a more real world test.
Finally, please consider not using SPIT sleeves or any other brand in places that get high traffic or will likely be resin bolted in the future. They will litter the cave wall forever (as can be seen in places like Garlands Pot and P8). A resin bolt can be removed and the hole reused. A 12mm through-bolt can be over drilled and hit into the hole and covered with resin. SPIT sleeves are likely visible forever.